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As resource becomes more efficient to use, the cost of using the resource drops, which can stimulate demand.
-William Stalling Jevons
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SYNC in 5G and AI
• Data centres transition from private to public cloud 

infrastructure

• More Intelligent applications moving to network edge. (Ex: 
Internet of Things, online gaming, 5G connectivity and 
autonomous driving)

• A single autonomous car produces 4–5 TB/day.

• Deploy energy-efficient data centres with smaller carbon 
footprints

• According to the International Energy Agency, data 
centres worldwide consumed about 200 terawatt-
hours (TWh) of electricity in 2020, nearly 1% of global 
electricity demand.

• Training jobs are highly sensitive to latency and packet loss. 
10usec delay can cause 20% connectivity issues and training 
loss.
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5G Timing Requirements
Technology/Application Phase accuracy Relative/Absolute

Intra-band contiguous Carrier Aggregation (CA) +/- 65 ns Relative
Intra-band non-contiguous CA +/- 130 ns Relative
Inter-band CA +/- 130 ns Relative
Coordinated multi-point (CoMP) with Joint Transmission (JT) +/- 130 ns Relative
High accuracy positioning service (All RRU/ AAU connected 
to same DU)

10 ns Relative

Self-driving/Autonomous cars < 5 ns Relative
Transmit diversity Category A+ +/- 32 ns Relative
MIMO (category A+) +/- 32 ns Relative
eCPRI (IEEE 802.1CM) +/- 130 ns Relative
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5G Overview

Fronthaul Midhaul Backhaul Edge/CoreDU CU 5GCRU

T-GM
T-GM

T-GM

±1.5usec

(Absolute Time Error)±65nsec/±130nsec

(Relative Time Error)

Synchronization Requirements

Services High Accuracy Positioning

Technologies Carrier Aggregation

CoMP

5G Frame Structure

Architecture Backhaul, Midhaul and Fronthaul

RU
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O-RAN Deployment Configurations

Source: O-RAN-WG4.CUS.0-v08.00 specification 
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O-RAN Timing Network Limit

Network Limit at O-RU UNI
Expected TE Limit

Enhanced RU Regular RU
Packet max|TEL| ≤ 1465ns ≤ 1420ns

Packet max|TERL| ≤ 60ns (FR2) ≤ 100ns

≤ 190ns (FR1)

1PPS max|TEL| ≤ 1465ns ≤ 1420ns

1PPS max|TERL| ≤ 60ns (FR2) ≤ 100ns

≤ 190ns (FR1)

Frequency Limit (For O-DU Class-A) ≤ 36ppb ≤ 36ppb

Frequency Limit (For O-DU Class-B) ≤ 32ppb ≤ 32ppb

Network Limit at O-RU UNI
Expected TE Limit

Enhanced RU Regular RU
Packet max|TEL| ≤ 1100ns ≤ 1100ns

Packet max|TERL| ≤ 60ns (FR2) ≤ 100ns

≤ 190ns (FR1)

1PPS max|TEL| ≤ 1100ns ≤ 1100ns

1PPS max|TERL| ≤ 60ns (FR2) ≤ 100ns

≤ 190ns (FR1)

Frequency Limit (For O-DU Class-A) ≤ 36ppb ≤ 36ppb

Frequency Limit (For O-DU Class-B) ≤ 32ppb ≤ 32ppb

LLS-C2 Configuration LLS-C3 Configuration
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AI for Networking vs Networking for AI
q Using AI/ML models to make the network smarter, autonomous, self-optimizing

ü 5G RAN, Core, Transport, Operators
q Building network infrastructure that supports AI workloads, AI training clusters, Fabrics.

ü AI datacenters, MEC AI clusters

Use cases
RAN Optimization
ü Beamforming
ü PRB scheduling
ü Dynamic TDD
ü Mobility/Handover Prediction

AI Training Custers over 5G

Network Optimization
ü Congestion prediction
ü Path selection
ü OWD based congestion control
ü Drift prediction
ü Time Error Prediction

MEC AI inference
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Timing Distribution in AI Cluster
q AI clusters interconnect thousands of GPUs and servers- high-bandwidth, low-latency fabric built from Ethernet, InfiniBand, or RoCEv2 switches.
q Fabric node, forwards compute data (model parameters, gradients) and timing information (PTP, SyncE, or TSN time sync).
q CLOS or Dragonfly interconnect with spine-leaf layers (BC or TC), ensuring deterministic multi-path routing.
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TAP-Model1
Time Error Requirements Accuracy

The maximum absolute time error between any two OCs ≤5 𝞵s

The maximum absolute time error between a GM and any OCs ≤2.5 𝞵s

The maximum time error between any 2 GMs ≤100 ns

The maximum time error generated by a TC ≤100 ns

(Spine/Leaf )

(Compute Nodes)

Typical Applications Relative Time error requirements 
between TSCs 

Distributed databases, applications profiling ≤5 𝞵s
High-Frequency Telemetry,

Multi-node performance analysis tools
≤2.5 𝞵s

Congestion control based on one way delay,
Time synchronized collective communication 

200 ns

Source: ITU-T G-Sup.DCSync

Source: OCP Profile for DC (Model1)

Source: OCP Profile for DC (Model1)

ITU-T Profiles consideration and IEEE1588.1

PTPoE link local multicast derived from G.8275.1 profile
PTPoIP unicast based on IEEE P1588.1 – Client Server PTP (CSPTP) with full timing 
support from the network utilizing transparent clocks.
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Time aware collective communication

q AI training clusters involve tens of thousands of GPUs exchanging gradients every few microseconds. 
q Each GPU independently computes the loss and local gradients for its data slice.
q GPUs must synchronize their updates through a collective communication operation called AllReduce. 
q Precision timing can ensure that these exchanges happen with sub-microsecond accuracy. 

Deterministic collective communication
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Sync-to-desync Power Control

PTP Grandmaster Clock

GPU1 starts

GPU2 starts

GPU3 starts

GPU4 starts

GPU5 starts

Time (s)

GPU6 starts

+2us

+2us

+2us

+2us

+2us

12:00:00.000000 s

12:00:00.000002 s

12:00:00.000004 s

12:00:00.000006 s

12:00:00.000008 s

12:00:00.000010 s

De-sync GPU clock phases by 2us 

qStagger the GPUs start at precise time, avoiding high current burst. 
qDynamically schedule loads to machine based on power consumption.
qDynamically schedule loads to machine based on the computing efficiency. 
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One way Delay
With sub-microsecond-level clock differences across devices, we can measure one-way delay, 
locate packet losses, and identify per-hop latency bursts.

Enables synchronized network snapshots.

Better congestion signal to delay-based congestion control to differentiate between forward and 
reverse path congestion
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Distributed Transactional Databases

Node1
(GPU)

Node2
(GPU)

Database1
(Storage)

Database2
(Storage)

T1: Write A=1 T1: Write B=1 T2: Write B=2 (T2>T1+2∈)

• T1 (Node 1) is a distributed transaction that writes A=1 on Database 1 
and B=1 on Database 2.

• T2 (Node 2) later wants to write B=2 on Database 2.
• ‘∈’ is the max clock error (time-uncertainty) relative to real time.
• To be certain T2 happens after T1 in real time

• T2 > T1 + 2∈ 
• Better clock sync → smaller ε → smaller commit-waits and shorter safe 

gaps
• Drive ∈ from, say, 100 ns with PTP/DC-grade sync, that 2ε safety 

margin shrinks to 200 ns, materially cutting write latency.

Time Uncertainty Bound (∈)

FaRMv2, an RDMA-based transactional system, observes the median transaction delay can 
drop by 25% if we improve ∈ from ∼20µs to 100ns. 
CockroachDB can significantly reduce the retry rate when ε drops from 1ms to 100ns.
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Predictive Modelling in Sync using ML and DL
Predictive Modelling: Learn from the data sets and predicting.
Adaptive Systems: Compensate for errors due to dynamic changes.
Optimized Control: Optimized servo loops to minimize clock drift and deviation.
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Model Performance
R-squared Adj R-squared

0.899598 0.896751

R-squared/Adjusted R-squared
• The model explains ~90 % of total variance in time-error 

measurements.
• Only ~10 % remains unmodeled (random PDV, jitter 

spikes, or unmeasured features).
• Adjusted R² ≈ 0.897. This indicates high explanatory 

power even after accounting for feature count. 

Model Quality

Very good, captures most deterministic contributors to TE.
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Questions
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