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Clock Selection using ML
Recommendation
Systems

* ML-Powered Decision Making using Content-
Based Similarity(recommendation systems).

* Quantify similarity by comparing and
calculating distance.

e (Calculate and Rank Master from Reference
Master Proximity.

* Dynamic Master Selection with least distance.




Lab Results
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PTP Offset Computes
using DL

e Due to Dynamic nature of OFM, influenced by
network latency, jitter, and clock drift, traditional
methods struggle with its non-linear and time-
dependent nature.

* Use Deep Learning for PTP Offset computes.

* Predicts future PTP offset, allowing for feed-
forward compensation and pre-emptive clock
adjustments.



Offset

Testing Results

LSTM Predictions on testing data
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GRU Predictions on testing data
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DYNAMIC HOLDOVER PROACTIVE FAILOVER TO ADAPTIVE NETWORK OPTIMIZED ALERTING AND
DURATION MANAGEMENT REDUNDANT SOURCES CONFIGURATION ESCALATION



Model R-squared (Train) MSE (Train)  RMSE (Train) R-squared (Test) MSE (Test) RMSE (Test)

0 GradientBoostingRegressor 0998128482  169.934879517 13035907315 0998124181  170.189446433  13.045667727
Al \Y L 1 LinearRegression 0566163390 39392.606232972 198475706909 0.566429937 39336.975862640 198.335513367

. 2 DecisionTreeRegressor 0998721518 116.086843992  10.774360491 0998717216  116.384528323  10.788166124

Reg ression 3 XGBRegressor 0997618388  216.251699834 14705498966 0997607720  217.046973423 14732514158
MOd els a nd 4 Sequential_Conv1D_RELU 0998531206 133.374628606  11.548793383 0998533514 133014129875  11.533175186
th . I t 5  Sequential Conv1D_SELU 0998089812 173455640709 13.170255909 0998087373  173.480356833  13.171194207
€ir results 6 LSTM 0996858942 285225375334 16888616738 0996856470  285.126473146  16.885688412

7 GRU 0980488032 1771.794331511  42.092687388 0.980484163  1770.138043080 42.073008486




Testing Results

Sequential_ConviD_RELU
Predictions vs Actuals
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Sync Anamoly Detections:Why it \
Matters? \ ‘\‘\Q &
. \ /V

Al/ML transforms sync monitoring from reactive
to predictive, ensuring the unwavering reliability
of our critical network timing.

\

Traditional monitoring struggles to keep pace with
network complexity and the subtle, evolving
threats to synchronization integrity.

Need Next-Gen Defense Against Sync Disruptions

Implement Al-driven monitoring for identifying
synchronization anomalies, outliers, and network
vulnerabilities.




Conclusions

@

Urgent Need for Standardization - To fully unlock the potential of these Al/ML applications,
we must collectively work towards integrating Al/ML considerations into timing standards.

Call to Action - Actively contribute to ITU-T and IEEE 1588 specifications to define best
practices, data models, and interoperability frameworks for Al/ML-driven timing solutions.

Collective Innovation - This collaborative effort is vital to ensure that Al/ML
truly revolutionizes sync across the network, fostering innovation, ensuring interoperability,
and safeguarding the pulse of our critical infrastructure for years to come.

CONFIDENTIAL 12



Rakuten Symphony

Questions?
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