

**“The Heartbeat of O-RAN:
Engineering The Synchronization at O-RU Level”**

- Sudarshan V

**Associate Vice President
Tejas Networks**

Agenda

- **Foundations of O-RAN Synchronization**
 - Why Sync Matters in Open RAN
 - Sync Sources (PTP / SyncE / GNSS)
 - How Synchronization Works End-to-End
- **Sync Architecture & Requirements**
 - 3GPP Timing Requirements (TAE, TE)
 - O-RAN Timing Categories (A/B/C)
 - RU Sync Consumers (FPGA, RF, DDR, OS, BMC)
- **The Sync Engineering Journey**
 - Clock Architecture & Planning
 - Clock Tree & DPLL Design
 - Bring-Up & Pre-Test (1PPS, 10 MHz, Timestamp Integrity)
- **RU Synchronization Behavior**
 - RU Sync State Machine
 - Wait Times & Lock Dynamics
 - 1PPS → Frame/Slot/Symbol Alignment
 - Carrier Deactivation & Holdover Logic
- **Validation & Integration**
 - OTA Synchronization Validation
 - E2E Integration with DU/CU/5GC/UE
 - Certification & Compliance (O-RAN, ITU-T, 3GPP)
- **Operational Insights**
 - SMO Telemetry & Closed-Loop Sync Assurance
 - Field Learnings (PDV, Asymmetry, Timestamping, Drift)
 - Operator Perspective: What the Network Expects from a Sync-Stable RU

Summary & Closing

Key Takeaways

The Complete RU Sync Journey

Q&A

O-RAN Basics

What is O-RAN?

O-RAN (Open Radio Access Network) is a disaggregated, open, multi-vendor architecture designed to bring modularity, programmability, and intelligence to the RAN.

• O-RU (Radio Unit)

- Handles RF transmission/reception, beamforming.
- Acts as a **timing endpoint** — must maintain phase/frequency/time alignment.
- Implements Low-PHY (7.2x split).

• O-DU (Distributed Unit)

- Executes real-time L2 & partial L1 (and parts of High-PHY) functions.
- Acts as **PTP master** or Clock Boundary for the RU.
- Hosts near-RT control loops.

• O-CU (Centralized Unit)

- Higher-layer protocols (PDCP, SDAP).
- Handles mobility, session management, and coordination.

• SMO / RIC (Intelligence & Management)

- SMO = Service Management & Orchestration (O1 interface).
- Hosts RIC (rApps/xApps) for AI-driven optimization.
- Provides sync monitoring, KPIs, and remedial actions.

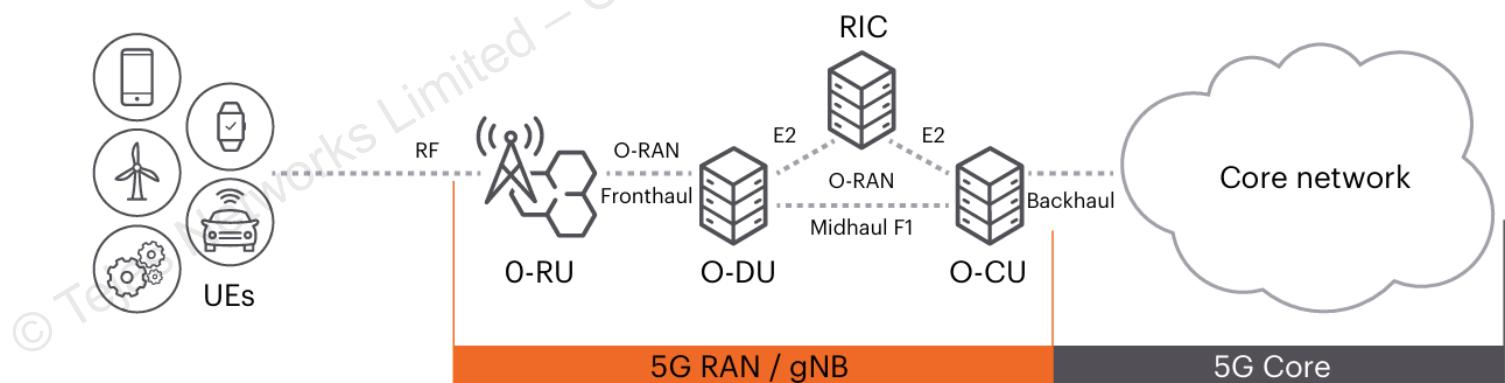


Image Courtesy - Keysight

O-RAN Fronthaul

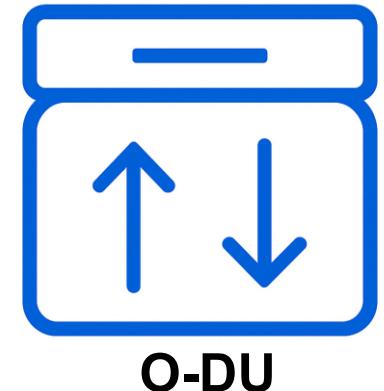
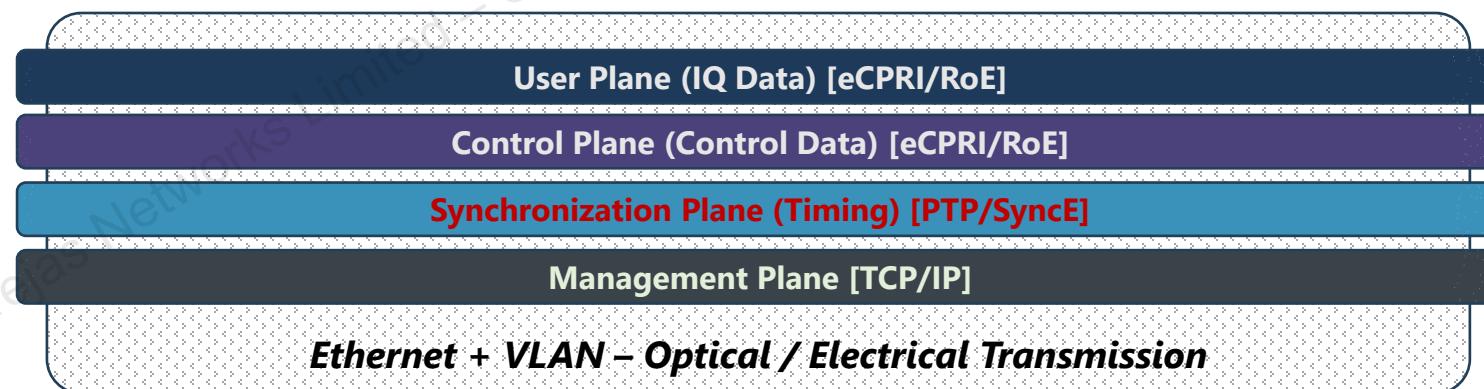
The O-RAN Fronthaul (Split 7.2x)

The fronthaul connects the O-DU and O-RU using standard Ethernet-based interfaces, transporting:

- **User Plane (U-Plane: IQ Data)**

- Carries 7.2x split IQ samples.
- Extremely time-sensitive — requires phase/frequency alignment between DU and RU.
- Any timing error impacts EVM, MIMO, and TDD switching.

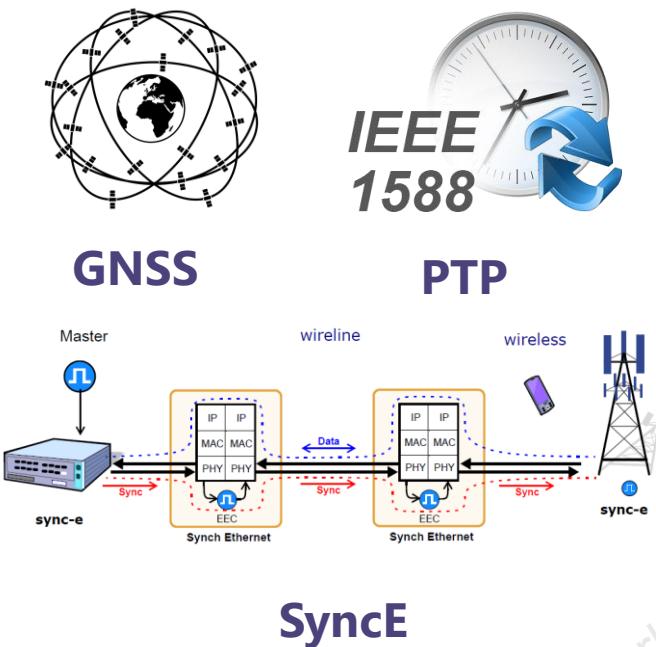
- **Control Plane (C-Plane)**



- Configures the RU for beamforming, PRACH, UL/DL switching.
- Must be synchronized with the U-Plane.

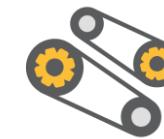
- **Synchronization Plane (S-Plane)**

- Distributes phase/time/frequency from network → DU → RU.
- Uses SyncE + PTP (IEEE-1588v2, G.8275.x profiles).
- This is the “heartbeat delivery channel” for the radio.

- **Management Plane (M-Plane)**


- Runtime monitoring, fault management, configuration.
- Sync KPIs are sent to SMO (offsetFromMaster, sync-state, TE, Freq error).

How Synchronization Works in O-RAN



Timing Sources

Timing Roles

- **O-RU**
 • Consumes SyncE + PTP
• Aligns LO, sampling clocks, TDD switching, and Frame #0
- **O-DU**
 • Acts as PTP Telecom Boundary Clock
• Provides stable timing to RUs through fronthaul
- **SMO (O1/Telemetry)**
 • Monitors offsetFromMaster, TAE, DPLL status, holdover, PPS jitter
• Enables closed-loop sync assurance

Timing Mechanism

- **SyncE (Synchronous Ethernet)**
 - Recovers **frequency** at PHY layer
 - Uses ESMC/SSM to signal quality levels
 - Stabilizes the DPLL base frequency
- **PTP (Precision Time Protocol)**
 - Provides **phase + time** alignment
 - Uses timestamping for nanosecond-level precision
 - Runs ITU-T G.8275.x telecom profiles
- **Synchronization Hierarchy**
 - GM (Grandmaster) → BC (DU) → TC/BC (Transport) → RU (Slave)

| **Frequency Sync** : Aligns carrier frequencies and LO stability (SyncE) |

| **Time/Phase Sync** : Aligns transmissions across sectors and sites (PTP) |

| **Frame Sync** : Aligns Frame #0, subframe, slot, and symbol boundaries inside RU |

Why Synchronization Defines the Radio Unit ?

Need of Synchronization?

O-RAN distributes radio functions across O-DU and O-RU. That disaggregation means the RU must maintain extremely tight timing alignment to ensure:

- **Correct TDD UL/DL Switching**

- Every RU must switch UL→DL→UL at the exact same nanosecond.
- Even ± 100 ns drift creates inter-cell interference.

- **Stable Beamforming & MIMO Coherence**

- Phase-synchronized antennas add signals constructively.
- Phase error increases EVM → reduces throughput.

- **Seamless Mobility & Handover**

- Timing mismatch → poor synchronization signals → degraded handovers.

- **IQ Transport Accuracy on Split 7.2xManagement Plane (M-Plane)**

- The O-DU sends IQ data assuming RU's frame boundary is exact.
- Any timing slip breaks the PHY pipeline.

RF Effects

- EVM Degradation
- Beamforming Drift
- Cross-Link Interference

PHY/MAC Effects

- HARQ Timing Failure
- Timing Misalignment
- PRACH Detection Errors

MOBILITY Effects

- TA Instability
- RSRP Measurement Errors
- HO Execution Delays

TRANSPORT Effects

- PDV Accumulation
- SSM Propagation Issues
- Packet Delay

RIC / SMO Effects

- False Alarms & Flapping
- Carrier Deactivation loops
- ML Predictions

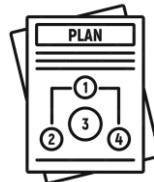
Sync Requirements (What the O-RU Must Achieve)

- ✓ **Frequency Accuracy**
 - Lock to external reference (SyncE / PTP / 10 MHz).
 - Ensures stable LO generation, RF sampling, and symbol timing.
- ✓ **Phase & Time Alignment**
 - Meet (e.g **±25 ns**) alignment for O-RAN conformance.
 - Critical for UL/DL switching, MIMO coherence, and IQ timing.
- ✓ **Holdover Performance**
 - Maintain timing during reference loss.
 - OCXO/TCXO/XO + DPLL behavior under temperature/load.
- ✓ **Convergence & Lock Times**
 - SyncE lock: (e.g **30–50 seconds**)
 - PTP phase lock: (e.g **50–90 seconds**) (depends on PDV + servo bandwidth)
- ✓ **Frame Boundary Mapping**
 - Deterministic mapping of **1PPS** → **NR Frame 0** inside FPGA/ASIC.
- ✓ **Monitoring & Telemetry**
 - KPIs exported via O1/SMO:
 - offsetFromMaster,
 - syncState,
 - MTIE/TDEV trends,
 - DPLL lock flags.

© Tejas Networks Limited. Cannot be Re-Produced without permission.

Sync Consumers (Where Synchronization is used in O-RU ?)

- ✓ **FPGA / ASIC Timing Fabric**
 - Slot/symbol counters, timestamp logic.
 - NCOs and digital PLL loops.
- ✓ **RF Transceiver (ADC/DAC + LO)**
 - Sampling clocks, TDD switching, phase alignment.
 - Critical for beamforming and CSI accuracy.
- ✓ **PHY Interfaces (Ethernet MAC + SyncE PHY)**
 - Hardware timestamping for PTP.
 - SyncE clock recovery and SSM propagation.
- ✓ **Memory Interfaces (DDR / LPDDR)**
 - Tight timing windows require clean, jitter-free clocks.
- ✓ **BMC / System Controller**
 - Time-based sequencing and event logging.
 - Dependency for deterministic power and reset flows.
- ✓ **SMO / Telemetry Interfaces**
 - Sync KPIs for RAN analytics & automated corrective actions.
- ✓ **OS / Operating System**
 - Uses accurate **Date/Time synchronization** for:
 - System logs, fault correlation
 - Application timestamping
 - Security protocols (TLS, certificates)
 - Inter-process timing
 - SMO/OAM reporting consistency
 - Often driven by **ToD (Time of Day)** derived from PTP/1PPS.
- ✓ **1PPS & 10 MHz Output**
 - Needed for debugging, DU sync, and test & measurement.


© Tejas Networks Limited. All rights reserved. This document cannot be reproduced without prior written permission.

O-RU : End-to-End Sync Engineering Journey

Requirements

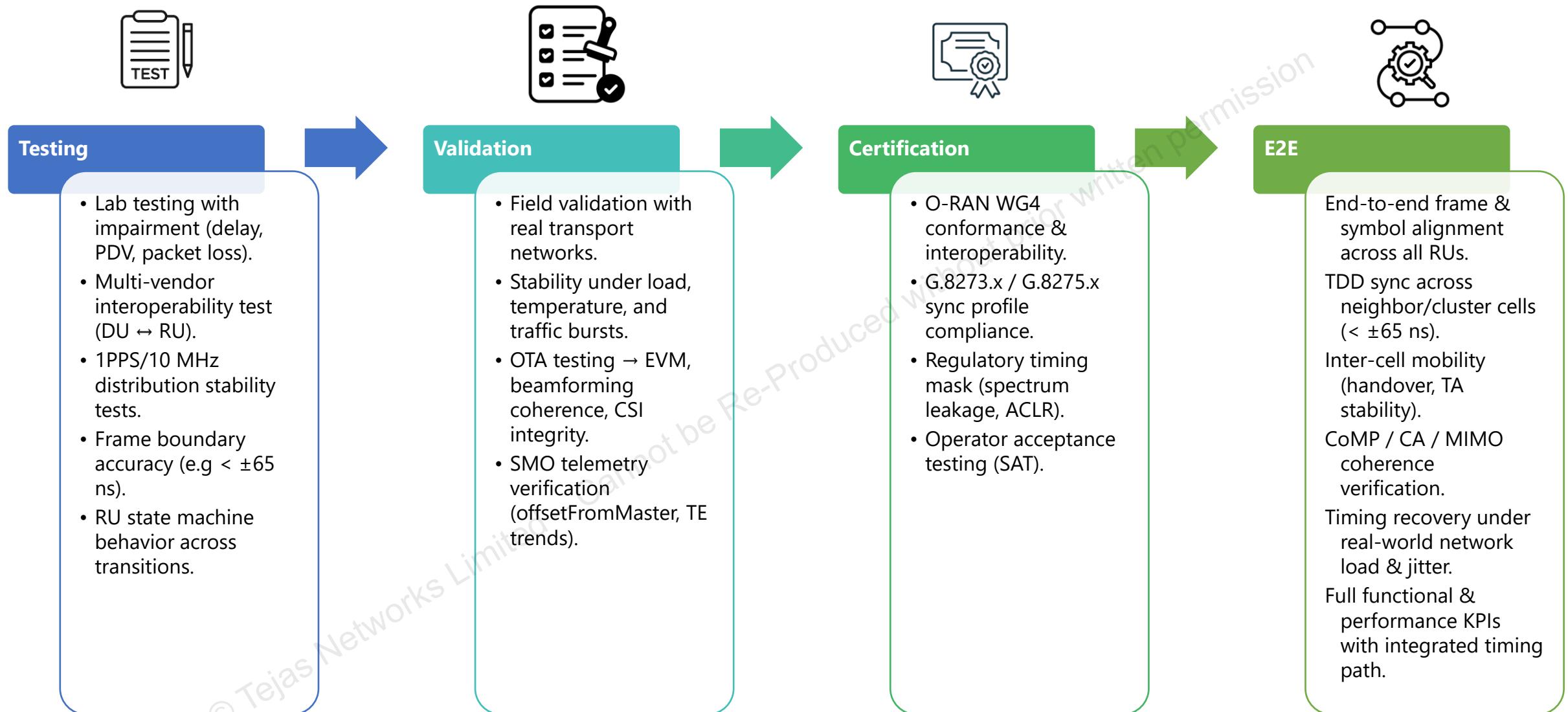
- Define RU timing accuracy targets (TE, TAE, jitter, holdover).
- Identify deployment class (macro, small cell, mmWave).
- Determine reference sources: GNSS, SyncE, PTP, 1PPS, ToD.
- Specify RU sync modes (LLS-C1/C2/C3/C4).

Planning

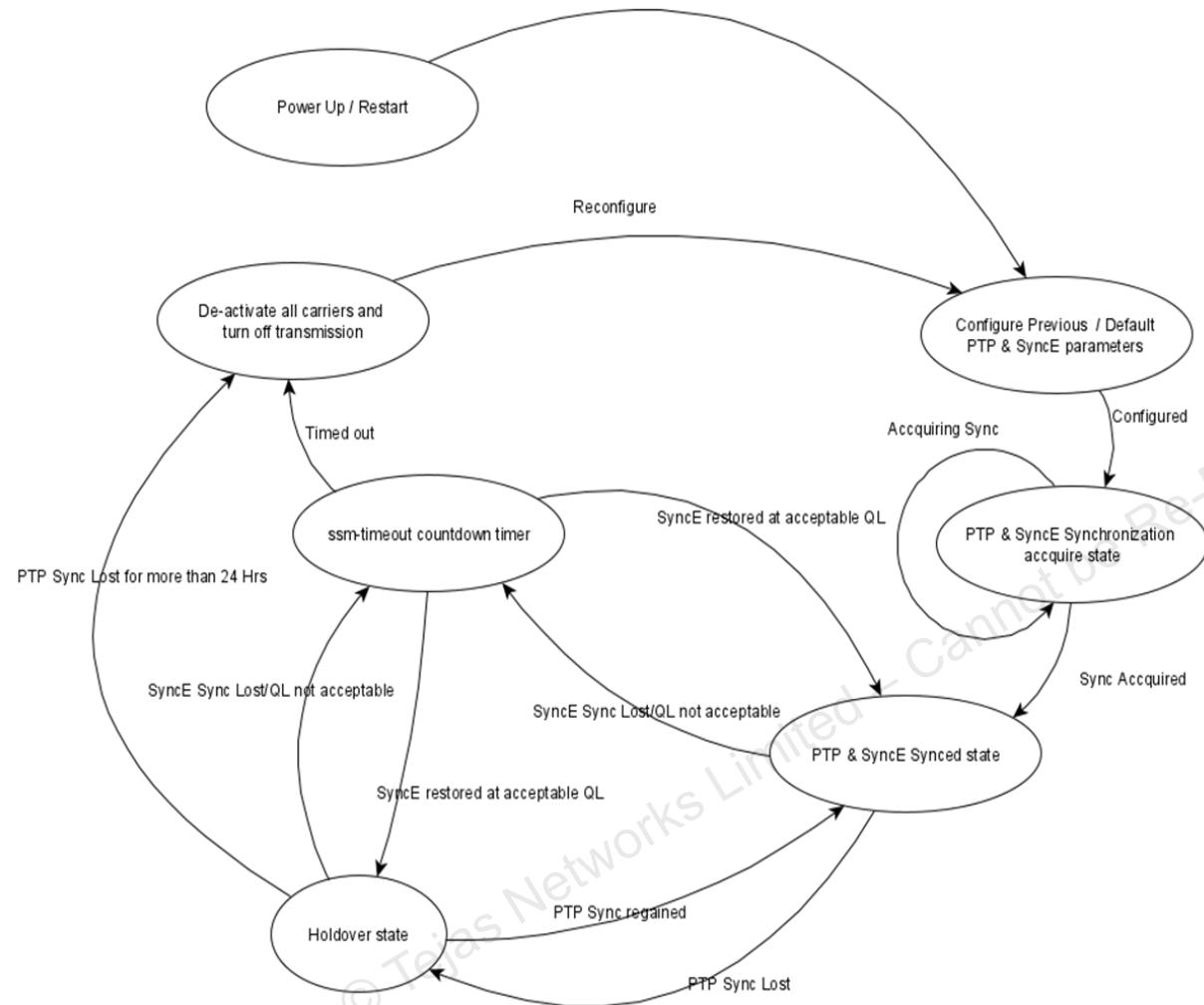
- Develop block diagrams: sync consumers + clock distribution.
- Define DPLL/OCXO architecture & servo algorithms.
- Plan clock tree topology (fan-out, hierarchy, test points).
- Plan SyncE/PTP frequency & message intervals.
- Create bring-up & measurement plan.

Execution (incl. Bring-Up)

- Board bring-up with 1PPS IN, 10 MHz, RefGen.
- Validate PLL locks, DPLL stability, timestamp paths.
- Power sequencing & timing alignment.
- Enable FPGA timing fabric, frame counters, timestamp capture.
- Enable Timing to RF TRX, BMC, etc.



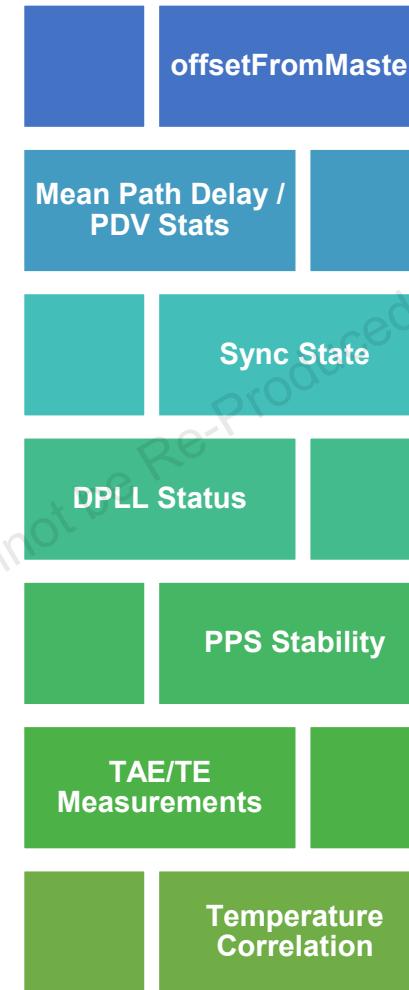
Pre-Test


- Activate SyncE → verify frequency lock.
- Enable PTP → verify servo convergence & phase lock.
- Check internal 1PPS OUT & frame boundary mapping.
- Measure PDV impact & initial TE budget.
- Check OTA Timing Compliance

© Tejas Networks Limited. All rights reserved. This slide is not to be reproduced without prior written permission.

O-RU : End-to-End Sync Engineering Journey

O-RU Synchronization State Machine


- **Initial State:** Power Up / Restart → Configure PTP & SyncE.
- **Acquire Sync:** Enter synchronization acquire state.
- **Normal Operation:** PTP & SyncE synced at acceptable quality.
- **Sync Loss Handling:**
 - Enter Holdover if sync lost.
 - Use internal oscillator for limited time.
- **Timeout Action:** If sync loss > 24 hrs → deactivate carriers.
- **Recovery:** Re-lock to PTP & SyncE when restored.

State Transition	
Original State (Free Run/Acquiring/ Synchronised/Holdover)	New State (Free Run/Acquiring/ Synchronised/Holdover)
Free Run	Free Run
Free Run	Acquiring
Acquiring	Synchronised
Synchronised	Holdover
Holdover	Free Run

SMO Integration, Telemetry & Closed-Loop Sync Assurance

- **Role of the SMO (Service Management & Orchestration)**
- The SMO ensures end-to-end sync quality by:
 - ✓ Collecting sync KPIs from all RUs
 - ✓ Monitoring timing behavior over long durations
 - ✓ Triggering actions when drift, jitter, or loss is detected
 - ✓ Providing visibility across thousands of radios
 - ✓ O-RAN O1 interface carries all sync telemetry.

Typical Sync KPIs

- **Multi-Layer Correlation**
 - Sync telemetry is correlated with:
 - EVM, RSRP/RSRQ anomalies
 - HO failures
 - TA instability
 - PDV spikes in transport
 - Temperature and power events
 - This turns sync monitoring into a **network-wide timer health dashboard**.
- **Why This Matters**
 - Prevents sync-related outages
 - Improves beamforming and MIMO reliability
 - Ensures high QoS and VoNR performance
 - Keeps cluster-level timing coherent
 - Reduces field-debugging time by 10x
 - Moves RAN toward self-healing sync loops

Certification & Compliance for SYNC-Ready O-RUs

- **O-RAN WG4 Conformance (CUS-Plane)**
- Confirms that the RU meets all fronthaul sync requirements:
 - **✓ Timing Categories (A / B / C)**
 - Phase/Time alignment
 - Frequency accuracy
 - TE/TAE thresholds
 - 1PPS → Frame alignment
 - **✓ PTP/SyncE Behavior**
 - Correct processing of Sync, Follow_Up, Delay_Req/Resp
 - Correct correctionField handling
 - SSM/ESMC propagation
 - SyncE priority selection
 - **✓ State Machine Compliance**
 - INIT → WAIT → FREQ-LOCK → TIME-LOCK → HOLDOVER → FAULT
 - Correct transitions and timers

- **ITU-T Sync Profile Compliance**
- Must meet global timing standards:
 - **✓ ITU-T G.8275.1 / G.8275.2 (PTP Telecom Profiles)**
 - Message intervals
 - BMCA behavior
 - PDV tolerance
 - Transparent Clock / Boundary Clock interoperability
 - **✓ ITU-T G.8262 / 8264 (SyncE)**
 - Jitter and wander performance
 - ESMC/SSM priority correctness
 - **✓ ITU-T G.8273.x (PTP Slave Clock Performance)**
 - TE, TDEV, MTIE thresholds
 - Holdover requirements
 - Jitter limits under PDV

Certification & Compliance for SYNC-Ready O-RUs

- **3GPP Conformance**
- Ensures RU meets radio-side timing expectations:
 - ✓ **TAE (Time Alignment Error) Requirements**
 - CA (FR1/FR2)
 - MIMO & Tx diversity
 - DC / TDD / inter-band CA
 - Must meet XXX ns or μ s-level targets
 - ✓ **RF Performance Metrics**
 - EVM
 - ACLR
 - SEM
 - SSB timing accuracy
 - Beamforming & CSI stability
 - These all indirectly validate sync quality.

- **Regulatory Certification**
 - Sync affects RF emissions:
 - ✓ **Emissions Under Timing Drift**
 - If timing drifts, spectral leakage increases
 - Must stay within FCC/ETSI masks
 - ✓ **Clock Stability During Frequency Drift**
 - Stability under voltage/temp variation
 - Regulatory acceptance depends on LO stability → Sync quality
 - **Interoperability Certification (Plugfests)**
 - Performed in O-RAN plugfests and operator labs:
 - ✓ **DU ↔ RU Timing Interop**
 - PTP packet formats correction
 - Field behavior, Startup ordering
 - Frame mapping consistency
 - ✓ **Multi-Vendor Scenarios**

These are true test of O-RU readiness.

Field Learnings & Practical Challenges in O-RU Sync

• PDV Is the No.1 Timing Killer

- Transport networks introduce **non-uniform PDV**, not seen in lab setups.
- Burst PDV (microbursts) causes servo oscillations.
- Most timing instability traces back to transport jitter, not the RU.

• Learning:

- Tune DPLL bandwidth conservatively; avoid overly aggressive phase correction.

• Asymmetry Is More Common Than Expected

- Sources of asymmetry discovered in the field:
- Different fiber lengths.
- Unequal switch paths.

• Learning:

- Always measure asymmetry during site acceptance; correct at transport layer.

• Timestamp Integrity Issues

- Field failures often traced to:
- Incorrect PHY timestamp configuration.
- FPGA variable-latency paths.
- Inconsistent correctionField behavior from intermediate BC/TC nodes.

• Learning:

- Validation of timestamp path is *mandatory* before deployment.

• Timing Drift in Real Temperature Cycles

- RUs exposed to outdoor conditions (40–70°C).
- Drift rate increases significantly at extremes.
- Holdover degrades faster than lab expectations.

• Learning:

- Deploy RUs with auto temperature compensation & SMO drift monitoring

Field Learnings & Practical Challenges in O-RU Sync

• GM Switchovers Are Disruptive

- Observed in the field:
- GM change → short PTP instability → RU drop to HOLDOVER.
- Some DU vendors generate inconsistent Announce messages temporarily.

• Learning:

- Use controlled GM switchover + damped DU algorithms.

• Multi-Vendor Integration Pitfalls

- Not all DUs implement PTP correction Field correctly.
- Vendor-specific PTP stacks behave differently under PDV.
- SyncE priority handling mismatches are common.

• Learning:

- Interoperability tests MUST include real DU + transport combinations.

• Frame Boundary Drift Under Load

- Real-world observation:
 - High UL traffic loads → timestamp jitter variation
 - RF LO temperature rise → micro phase drift

• Learning:

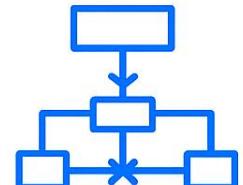
- Continuous PPS→Frame0 monitoring is essential; SMO analytics must correlate drift with load & temperature.

• Operators Prefer Stable Over Fast Lock

- RUs that lock quickly but oscillate are worse than slow-but-stable lock.
- Production networks prefer fewer state transitions, even if slower.

• Learning:

- Tune servo bandwidth for stability > speed.


Operator Perspective:

Yes – Its Bonus Slide! 😊

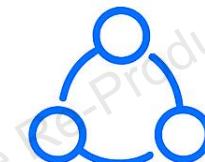
What the Network Expects from a Sync-Stable RU?

Predictable & Deterministic Behavior

- RU must follow a **deterministic state machine**: INIT → WAIT → FREQ-LOCK → TIME-LOCK → OPERATIONAL.
- No unexpected transitions or oscillations.
- Startup lock times consistent across temperature & load.

Deterministic Behavior

Stable TAE


No Carrier Drops

Stable TAE / TE Under Real Traffic

- Timing alignment must remain stable under:
 - Full UL/DL load
 - Scheduling pressure
 - Beamforming activation
 - Temperature swings
- Operators **prioritize stability over fast lock**.

Strong Holdover

Multi-Vendor Interoperability

Accurate Telemetry

Cluster-Level Timing Consistency

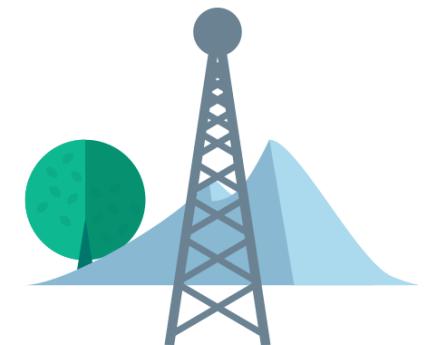
- Neighbor RUs must remain aligned for:
 - TDD UL/DL switching
 - MIMO/beamforming
 - CA/DC operation
 - Mobility & HO stability
- Operators expect $< \pm 65 \text{ ns}$ drift between RUs in a sector.

Alignment with Neighboring RUs

No Surprise Carrier Drops

- Carriers should deactivate **only** when absolutely required.
- RU should handle:
 - GM switchover
 - PTP burst errors
 - Short SyncE glitcheswithout unnecessary drop.

Strong Holdover Behavior


- Maintain tight timing during:
 - PTP loss
 - Fiber cut
 - DU restart
- Drift must be controlled (good OCXO/TCXO performance + DPLL tuning).
- Smooth recovery—**zero phase jumps**.

Accurate, Actionable Telemetry

- SMO/RIC must receive:
 - offsetFromMaster
 - syncState
 - TE/TAE trends
 - PPS jitter
 - DPLL status
- KPIs must support **closed-loop automation**.

The Heartbeat of O-RAN: Key Takeaways

- ✓ Synchronization is the **foundation** of RU performance — **not an add-on!**
- ✓ Tight alignment drives **MIMO, beamforming, CA, and TDD stability**.
- ✓ RU design must start with a **sync-centric clock architecture** and deterministic timing fabric.
- ✓ PTP + SyncE + DPLL (Network Synchronizer) tuning define **lock performance and robustness**.
- ✓ OTA + E2E validation confirm real-world stability under **PDV, load & temperature**.
- ✓ SMO telemetry enables **closed-loop correction** and network-wide sync assurance.
- ✓ Field learnings show that **PDV, asymmetry, timestamp integrity, and temperature drift** are the real challenges.
- ✓ A deployable RU passes **O-RAN, ITU-T, 3GPP and regulatory timing** compliance.

“Synchronization is not a feature — it is the operating system of O-RAN.”

Thank you!

Contact :
sudarshanre@tejasnetworks.com